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A B S T R A C T   

We develop an epidemionomic model that jointly analyzes the health and economic responses to the COVID-19 
crisis and to the related containment and public health policy measures implemented in Luxembourg. The 
model has been used to produce nowcasts and forecasts at various stages of the crisis. We focus here on two key 
moments in time, namely the deconfinement period following the first lockdown, and the onset of the second 
wave. In May 2020, we predicted a high risk of a second wave that was mainly explained by the resumption of 
social life, low participation in large-scale testing, and reduction in teleworking practices. Simulations conducted 
5 months later reveal that managing the second wave with moderately coercive measures has been epidemio-
logically and economically effective. Assuming a massive third (or fourth) wave will not materialize in 2021, the 
real GDP loss due to the second wave will be smaller than 0.4 percentage points in 2020 and 2021.   

1. Introduction 

The COVID-19 pandemic has affected people’s health and economic 
indicators all around the globe. Focusing on Luxembourg’s economy and 
workers from neighboring regions (representing about one half of Lux-
embourg’s labor force), we develop an epidemionomic model that com-
bines an extended Input–Output economic block with a multi-sector SIR 
epidemiological block, and use it to analyze the public health and eco-
nomic effects of the COVID-19 crisis week after week throughout the 
years 2020 and 2021. The Input–Output structure allows us to account 
for the cascading responses to non-pharmaceutical interventions, due to 
inter-industry and inter-country linkages.1 The SIR epidemiological 
block accounts for interactions between transmission rates on the job in 
each industry (influenced by employment rates), and transmission rates 
outside the labor market (at school and in social life, in Luxembourg and 
in its contiguous regions). Our model is the product of a collaborative 

effort involving economists and epidemiologists from various in-
stitutions based in Luxembourg. It has been used to produce nowcasts 
and forecasts to assist decision makers at various stages of the crisis. 

In particular, we focus here on two key moments in time. The first 
one is the deconfinement period following the first lockdown (May 
2020). As virus transmission rates had reached very low levels in 
Luxembourg, this seemed an ideal time for lifting containment mea-
sures. The model was used to highlight the risk of a rebound in the 
infection curve and to identify appropriate accompanying measures. The 
second moment brings us back to October 2020, when the COVID-19 
second wave was hitting much of Europe. It is thus with a weary sense 
of déjà vu that Luxembourg’s citizens were impacted by new packages of 
restrictions implemented to contain the virus. The specter of a re- 
confinement hanged over the economy. Our model was used to 
compare the implications of moderately and highly coercive sanitary 
measures, and to assess the macroeconomic impact of the second wave. 

* Corresponding author. 
E-mail address: frederic.docquier@liser.lu (F. Docquier).   

1 Baldwin and Weder di Mauro (2020) argued: “this virus is as economically contagious as it is medically contagious.” As the production of basic and intermediate 
goods in some countries is put on hold, the production of more advanced goods is also paralyzed. These disruptions induce shortages, especially, but not exclusively, 
in the healthcare sector, and result in surges in prices and competition between consumers and between countries. 
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The key principle of our model is that it treats economic and 
epidemiological trends as interdependent, which is justified for several 
reasons. Firstly, it has been abundantly documented that non-pharma-
ceutical measures implemented at various stages of the crisis have 
affected public health and economic indicators jointly. In particular, 
lockdown and social distancing measures were necessary to flatten the 
infection curve and avoid a collapse of the health care system, at the cost 
of generating sizeable cuts in economic output.2 Secondly, after several 
phases of generalized or partial lockdown, policymakers implemented 
gradual measures to restart the economy. Lifting containment measures 
induces changes in employment which in turn, revive on-the-job in-
teractions between workers as well as between workers and customers. 
Depending on PCR testing policies, contact tracing, social distancing, 
hygiene and prevention measures at the workplace and in social activ-
ities, these interactions impacted the propagation of the virus within the 
country as well as in the cross-border regions. In turn, changes in 
infection rates in the neighboring regions affect the number of workers 
available for the labor market and potential employment levels.3 

Uncertainty around the scale of these interactions and around the 
effectiveness of lockdown and deconfinement plans has always been 
substantial. We use our epidemionomic model to produce nowcasts and 
forecasts of the effects of the crisis and related containment policies, 
refining the estimates provided by OECD (2020) and RECOVid (2020) 
and producing results by period of one week throughout the years 2020 
and 2021. Our main findings are the following. During the first decon-
finement period, we were relatively optimistic that the restarting of 
lockdown industries per se would not generate a relapse of the pandemic 
if teleworking practices could be maintained and large-scale testing is 
well implemented. By contrast, we argued that bringing teleworkers 
back to the workplace and, perhaps more importantly, the resumption of 
social life were likely to generate a rebound in the infection curve. Five 
months later, almost at the onset of the second wave, we were relatively 
optimistic about the effectiveness of moderately coercive sanitary 
measures implemented in 2020Q4 and 2021Q1. We estimate that the 
management of the second wave translates into a GDP loss that is 
smaller than 0.4 percentage point in the years 2020 and 2021. Our 
scenario is still valid today and compatible with the vaccination 
campaign. If Luxembourg can escape a massive third and/or fourth wave 
– a threat linked to the propagation of new variants of the virus – in the 
post-Summer period, real GDP growth should be around 3.7% in 2021, a 
level that is slightly inferior to the long-run trend. 

We contribute to a recent and fast-growing literature linking public 
health and economic responses to the COVID-19 crisis. Part of the 
literature focuses on the dynamics of the disease, including the role of 
social-distancing (Greenstone and Nigam, 2020) and the quantification 
of the work that can be done from home in order to slow down the 
spread of the virus (see e.g., Barbieri et al., 2020; Koren and Peto, 2020; 
Dingel and Neiman, 2020; Depalo, 2021; Milani, 2021). An increasing 
number of papers adds epidemiological blocks to macro-economic 
models to evaluate the cost of the lockdown and different restarting 

strategies (Atkeson, 2020; Alvarez et al., 2020; Jones and Philippon, 
2020; Berger et al., 2020; Bonacini et al., 2021a). For example, 
Eichenbaum et al. (2020) extend the canonical epidemiological model to 
study how endogenous consumption and labor supply decisions of 
utility-maximizing agents affect contagion. The competitive equilibrium 
of their model is not socially optimal because infected individuals do not 
internalize how their actions amplify the spread of the virus. More 
similar to us, Fadinger and Schymik (2020) use an input-output model 
calibrated on Germany to evaluate the impact of work-from-home 
(henceforth referred to as teleworking) on infection risk and output at 
the regional level. Simulating a confinement where production is done 
exclusively by workers who can work-from-home, they find that 
confinement reduces labor supply by 58% and implies a weekly GDP loss 
equivalent to 1.6% of the annual GDP. Barrot et al. (2020) calibrate a 
standard network model using French input–output linkages. These two 
papers are similar in spirit to our strategy but our model also accounts 
for other important ingredients such as teleworking, parental leaves, 
testing and quarantining polices, etc. Moreover, our epidemiological 
block accounts for the spread of the virus outside the workplace in 
addition to differential infection rates of cross-border workers, a speci-
ficity of the Luxembourgish labor market. 

The remainder of this paper is organized as following. Section 2 
describes the epidemionomic model and its parameterization. Health 
and economic effects of the COVID-19 crisis and lockdown measures and 
restarting scenarios are investigated in Section 3. Section 4 concludes. 

2. An epidemionomic model for Luxembourg 

We develop a model that links the economic and epidemiological 
aspects of the COVID-19 crisis. Individuals and firms’ behaviors are not 
micro-founded, but embedded in scenarios. We parameterize it on 
Luxembourg’s economy and population – accounting for cross-border 
labor movements between Luxembourg and its contiguous regions – 
and use it to nowcast and forecast the public health and economic effects 
of the pandemic and related containment measures at different key 
stages of the crisis. The model has a weekly structure, and assumes that 
one week corresponds to the time of delivery of intermediate inputs 
from one industry to another. 

2.1. Economic structure 

The COVID-19 crisis has required total or partial lockdown measures 
implemented in several industries (accommodation and food services; 
arts, entertainment and recreation services; construction; wholesale, 
retail trade and repair services; and to a lesser extent in the 
manufacturing industry; transportation and storage services; real estate 
services). Given intersectoral linkages, these lockdown measures have 
gradually “contaminated” the other sectors of the economy, leading to 
cascading effects. Similarly, lifting economic containment measures 
induces ripple effects on the rest of the economy. Large benefits from 
deconfinement arise in industries exhibiting the greater linkages with 
lockdown sectors, while simultaneously not suffering from disrupted 
global supply chains. 

To account for intersectoral linkages, we develop here an extended 
Input–Output (I/O) model that accounts for both demand-side and 
supply-side mechanisms. This extended I/O framework is intended to 
characterize the functioning of the economy with fixed prices, fixed 
capital stocks, fixed technology and fixed workforce size by industry (i. 
e., no intersectoral mobility). Industries are denoted by i = 1,…, I. Our 
model distinguishes between nineteen industries, listed in Table 1. 
Before adding the time dimension, we first focus on the (stationary) 
equilibrium of the model. 

Standard I/O model. The standard I/O model ignores supply-side 
constraints and assumes that each sector’s output is determined by 
total demand – demand of intermediate inputs by other sectors, and 
demand for final goods by domestic and foreign actors. Typically, the 

2 Some authors have seen lockdown measures as resulting from a tradeoff 
between public health and economic objectives (Barro et al., 2020; Gourinchas, 
2020). This tradeoff is much more ambiguous than it is apparent as the reces-
sion could have been deeper without the lockdown, as evidenced from the 1918 
Spanish flu (Correia et al., 2020). It is hard to identify whether the measures 
implemented to curb the infection curves contributed to increase or decrease 
confidence in the economic system. A severe public health crisis alone could 
have generated panic and (potentially drastic) changes in individual behaviors. 
Many economic crises were associated with panics from depositors or from the 
banking sector. 

3 According to Facebook data, commuting flows and business travels repre-
sent 99% of cross-border movements traffic in normal times (Docquier et al., 
2021). Things might be different during the vacation periods. Although the 
number of holiday makers has been smaller than usual in 2020, we ignore the 
role of these moves in the contamination process due to absence of data. 
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total sales of industry i (Xd
i ) are given by: 

Xd
i =

∑

j
Xij + Di + Ei, (1)  

where Xi,j is the demand for intermediate inputs by industry j, Di is the 
domestic (Luxembourgish) demand for final goods, and Ei is the demand 
for exports. 

The demand for intermediate inputs by industry j is assumed to be 
proportional to the total sales of that industry. We thus have Xij = aijXd

j , 
where the aij’s represent constant technological coefficients. Eq. (1) can 
be rewritten as: 

Xd
i =

∑

j
aijXd

j + Di + Ei, (2)  

which links the total sales of industry i to the total sales of all other 
industries. 

Using matrix notations and denoting the matrix of technological 
coefficients by A, this gives Xd = AXd + D + E which represents a system 
of I equations. The well-known solution of the standard I/O model is 
given by Xd = (1 − A)− 1

(D+ E). In this framework, a positive demand 
shock in industry i generates a direct increase in output. This increases 
the demand for intermediate inputs addressed to the other sectors, 
which in turn increase their own demand for intermediate inputs and 
thereby generate indirect effects on the economy. The exact opposite 
mechanism arises when the economy is subject to a negative demand 
shock. The larger the linkages with the other sectors (i.e., the larger the 
aij’s), the larger the total effect on the economy. 

Non-binding supply-side. The underlying supply side of the stan-
dard I/O model is governed by the following relationship4 : 

Xd
i =

∑

j
Xji + Yi + Mi, (3)  

where Xd
i is the amount produced in industry i. On the right-hand side, 

the first term of the sum represents the value of domestic intermediate 
inputs (such that Xji = ajiXs

i ), Yi is the value added in industry i, whose 
production requires using Ki units of physical capital and Li workers (i. 
e., Yi = F(Ki, Li)),5 and Mi is the demand for foreign inputs (i.e., im-
ports). As local intermediate inputs, imports are proportional to total 
sales (Mi = miXd

i ). Hence, Eq. (2) determines the equilibrium level of 
sales in all industries (Xd

i ), and Eq. (3) determines how sales revenue is 
distributed among domestic and foreign suppliers of intermediate in-
puts, workers and capital owners. 

For a given stock of physical capital (Ki) and a given supply of labor 
(Ls

i ) in each industry i, the maximal value added can be expressed as Ys
i =

F(Ki,Ls
i ). The full-employment condition in industry i is given by: 

Xs
i =

[
∑

j
aji + mi

]

Xs
i + Ys

i =
Ys

i

1 −
∑

jaji − mi
, (4)  

which implies that total sales and value added in each industry i are 
linked by a relation of proportionality (whether the full-employment 
condition holds or not). 

The implicit assumption of the standard I/O model is that Xd
i < Xs

i in 
all sectors, or equivalently, Yd

i < Ys
i and Ld

i < Ls
i .

6 Hence, firms can 
respond to the rising demand from the other sectors and from final 

consumers by producing more. As Ki is fixed, the only variable of 
adjustment that firms can use is Li, the level of employment. When 
supply follows demand, firms adjust the level of employment to meet 

total demand for their product. Hence, Ld
i = F− 1

[
Xd

i

(
1 −

∑
jaji − mi

) ]
. 

When demand increases, firms in industry i increase their value added 
(Yd

i ) and their imports (Mi) without constraints to meet demand for their 
goods. The supply-side plays no role, except that it determines how 
revenues are distributed between capital owners, workers, domestic and 
foreign suppliers of intermediate goods. 

Binding supply-side constraints. When modeling the effect of the 
COVID-19 crisis and of lockdown measures, we need to enrich the 
standard model with binding supply-side constraints. First, containment 
measures reduce the permitted level of employment in lockdown in-
dustries. Second, some workers are infected by COVID-19 and cannot 
supply labor. Third, in addition to infection, school closures imply that 
many workers are forced to take parental leave. Fourth, disrupted global 
value chains can be such that the required amount of imported inter-
mediate goods (miXd

i ) is not available on the market. In Luxembourg, 
firms did not report shortages of foreign intermediate inputs during the 
COVID-19 crisis.7 However, lockdown and sanitary measures have 
drastically reduced the maximal level of employment during the lock-
down (Ls

i ), and this has affected the maximal levels of value added Ys
i and 

of sales. We will explain how the level of Ls
i is linked to lockdown and 

epidemiological conditions in the next section. 
Starting from the pre-crisis stationary equilibrium, our economic 

block can be used to simulate the economic effect of the crisis and 
resulting lockdown measures (i.e., constraints on Ls

i,t and Ys
i,t) on activity. 

Two important ingredients govern our simulated trends. First, we as-
sume that each iteration of the I/O matrix takes one week of time. Final 
demand is met instantaneously when supply constraints allow for it, 
while supplying intermediate inputs involve a delivery delay of one 
week. We thus include a time subscript t into the notations. Second, at 
each iteration, we combine demand and supply constraints, allowing the 
condition Xd

i,t < Xs
i,t to be violated in some industries. 

The dynamics of the extended I/O model with supply-side con-
straints are now characterized by: 

Xi,t = min

[

Xs
i,t,

∑

j
aijmin

(
Xd

j,t− 1,X
s
j,t− 1

)
+ Di,t + Ei,t

]

(5) 

Given the parameters of the Luxembourg I/O table and the eco-
nomic/health shocks induced by COVID-19, the simulated solution of 
this model determines the endogenous production regime of each in-
dustry (excess supply or constrained supply capacity) as well as 
industry-specific multiplier effects. For industries in excess supply ca-
pacity, demand determines the total level of sales which, in turn, de-
termines the level of employment and value added. For industries in 
constrained supply capacity, the maximal level of employment de-
termines the value added which in turn, determines the total amount of 
sales. As stated above, the existence of supply constraints induces a 
disciplined and sizeable cut in output. Binding supply constraints also 
limit the magnitude of the I/O multiplier. This slows down the recovery 
when some confined sectors are restarted or when final demand 
increases. 

2.2. Epidemiological structure 

The epidemiological block consists of a multi-sector SIR compart-
mental model governing the shares of susceptible, infected and recov-
ered people from 78 socio-demographic groups. These include 
Luxembourgish students and retirees (2 groups of inactive nationals), as 

4 Eq. (3) corresponds to a column of the I/O matrix, whereas Eq. (2) corre-
sponds to a row.  

5 In the Cobb–Douglas case, we have Yi = BiK1− αi
i Lαi

i where αi is the labor 
income share in industry i, and Bi denotes total factor productivity.  

6 Another implicit assumption is that Ls
i is smaller than the optimal level of 

employment L∗
i (corresponding to a value added of Y∗

i = F(Ki, L∗
i ) and a level of 

total sales of X∗
i ). The latter level is determined by profit maximization. 

7 According to the (unpublished) survey launched by the Chamber of Com-
merce during the first lockdown. 
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well as workers from 4 countries of residence who can be employed in 19 
industries (listed in Table 1, corresponding to 76 groups of workers). In 
sum, we have:  

• Six age/origin groups (denoted by superscript a): students (with a =

y for young), workers (with superscript a ∈ o, denoting the country 
of residence of workers) and retirees people (with a = r). For 
workers, we distinguish four countries: o = (L, F,G,B) for 
Luxembourg, France, Germany and Belgium. Students and retirees 
are all living in Luxembourg. We thus have six age/origin groups, a =

(y,L,F,G,B, r).  
• Twenty-one sectors of the society (denoted by i = 0,1,…, I, I+ 1) in 

which within-group interactions take place: schools are denoted by 
sector i = 0 and relate to group y only, 19 industries are denoted by 
sectors i = 1,…, I (in line with the notations of the previous section) 
and relate to groups o = (L, F,G,B) only, and the old-age sector is 
denoted by i = I + 1 (=20 in our case) and relates to group r only (it 
includes retirement homes and social activities for retirees). 

The total population of each socio-demographic group is denoted by Na
i 

and is assumed to be constant over time. Our SIR model by construction 
ignores deaths.8 At time t, the population of each group is divided into 
Sa

i,t susceptible, Ia
i,t infected, and Ra

i,t recovered. The group of infected 
includes Aa

i,t ≡ θIa
i,t infected and asymptomatic people (θ < 1). 

Combining all possible categories, we obtain 312 groups (78 socio- 
demographic groups times 4 possible health status). 

Virus transmission rates in sector i (i.e., on the job for workers, at 
school for students, and in the old-age sector for retirees) and in the 
place of residence (where all groups can interact) are endogenous. The 
contamination process depends on the quantity of within-group in-
teractions (influenced by the fraction of time spent in one’s own sector, 
ei,t) and between-group interactions (determined by 1 − ei,t). As 
explained below, we refer to the extensive margin mechanism when 
discussing the role of time allocation. The contamination process also 
depends on the sector-specific transmission rates, which are influenced 
by sanitary policies as well as by the number of people interacting, as 
explained later. We refer to the intensive margin mechanism when 
discussing the latter effect. The population dynamics in the 312 groups 
are governed by: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sa
i,t+1 = Sa

i,t − ea
i,tbi,t

Sa
i,t

∑

a
Ia

i,t

∑

a
Na

i

− (1 − ea
i,t)β

a
t Sa

i,t i
a
t ,

Ia
i,t+1 = Ia

i,t + ea
i,tbi,t

Sa
i,t

∑

a
Ia

i,t

∑

a
Na

i

+ (1 − ea
i,t)β

a
t Sa

i,t i
a
t − Ga

i,t,

Aa
i,t+1 = θIa

i,t+1,

Ra
i,t+1 = Ra

i,t + Ga
i,t,

(6)  

where bi,t is the within-sector virus transmission rate in sector i in 
Luxembourg, βa

t is the virus transmission rate outside the sector (in 
family life, leisure, etc.) in the country of residence of group a, iat is the 
country-wide average proportion of infected people in the population of 
the country of residence, and Ga

i,t is the flow of recovered in group a and 

in week t. These parameters are defined over a period of one week in our 
model. Before the vaccine is available, we assume that immunity is 
obtained after having been infected and is permanent.9 

In the case of COVID-19, most infected people recover after 10 days 
on average. In a model with a daily structure, we would define the 
number of recovered as the number of new contagious cases nine days 
before. Here, the weekly structure of our model implies that the flow of 
recovered during week t is a weighted sum of the flow of contagious 
cases in weeks t − 1 and t − 2. Following analytical developments in 
Appendix A of Burzynski et al. (2020), the weekly flows of recovered 
group a and industry i during period t can be approximated by a 
weighted sum of the flows of new infections at time t − 2 and t − 1:10 

Ga
i,t =

2
7

[

ea
i,t− 2bi,t− 2

Sa
i,t− 2

∑

a
Ia

i,t− 2

∑

a
Na

i

+ (1 − ea
i,t− 2)β

a
t− 2Sa

i,t− 2ia
t− 2

]

+
5
7

[

ea
i,t− 1bi,t− 1

Sa
i,t− 1

∑

a
Ia

i,t− 1

∑

a
Na

i

+ (1 − ea
i,t− 1)β

a
t− 1Sa

i,t− 1ia
t− 1

]

(7) 

Turning our attention to transmission rates, they depend on the 
frequency of contacts between infected and susceptible people within 
each sector of the society. We assume that sick and symptomatic 
workers/students/retirees self-isolate as soon as they feel the symptoms. 
This is a reasonable assumption in Luxembourg as medical doctors 
received the means to quarantine potentially infected people and to 
provide PCR tests throughout the pandemic (even at the early stage). As 
symptoms are felt a few days after becoming infectious (2.5–3 days, Liu 
et al. (2020)), a fraction μi,t of symptomatic people maintain 
within-sector interactions while being contagious if PCR testing is not 
performed on a daily basis. Some individuals are asymptomatic during 
the whole cycle of the disease and never self-isolate. A (greater) fraction 
μa

i,t of asymptomatic individuals maintain within-sector interactions. The 
fractions (μi,t ,μa

i,t) depend on the efficiency and frequency of PCR testing 
as well as contact tracing. Within-sector and out-of-sector transmission 
rates can be expressed as: 
⎧
⎪⎨

⎪⎩

ba
i,t = biρi,te

χi
i,t

[(
1 − θ)μi,t + θμa

i,t

]
,

βa
t = βaρa

t ,

(8)  

which allows to highlight the main determinants of virus propagation:  

• Within-sector transmission rates depend on the average number of 
contacts per person and per unit of time, and on the probability that 
infected people have contacts with susceptible subjects. Infected 
people’s probability to have contacts with susceptible subjects de-
pends on the probability of a contagious individual to maintain in-

teractions with his peers, which is given by 
[(

1 − θ)μi,t + θμa
i,t

]
in Eq. 

(8). This probability depends on the share of asymptomatic cases (θ) 

8 Assuming deaths are proportional to the number of infected retirees would 
not change significantly the results. As of July 1st 2021, the country has 
recorded 818 deaths due to COVID-19, representing 0.14% of its population 
only. See Favero et al. (2020) for a more complex approach involving 
age-specific lethality rates. 

9 The duration of immunity from COVID-19, if any, is not determined yet. 
The model predictions are thus valid for time periods that do not exceed the 
duration of the acquired immunity. 
10 We numerically show in Appendix A of Burzynski et al. (2020) that pre-

dicting the weekly flow of recovered using Eq. (7) improves the predictive 
power of the model in comparison with a probabilistic model relying on a 
constant recovery rate (i.e., Ga

i,t = g × LOI
i,t ). The reason is that, contrary to the 

flow of new infections within the week, the total stock of contagious people (Ia
i,t) 

has no reason to be distributed uniformly over the 10 daily contagious cohorts: 
this stock increases rapidly during the first phase of the pandemic (i.e., when 
the number of COVID-19 cases increases rapidly), and decreases fast after the 
peak of the infection curve has been reached. 
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as well as on testing and tracing measures implemented to isolate 
infected workers (μi,t ,μi,t).  

• The number of contacts per unit of time within sector i is expressed as 
the product of bi, a sector-specific parameter that reflects working 
conditions in normal times (i.e., physical proximity, exposure to 
disease, age group, etc.), by ρi,t, a variable that can be normalized to 
unity at the beginning of the pandemic, and that captures prevention 
and physical distancing measures implemented in the sector. In 
addition, physical distancing might partly depend on the density of 
people in the sector (influenced by ei,t), a mechanism that is referred 
to as the intensive-margin effect of employment on transmission 
rates. A potential specification is ρi,t = ρi,te

χi
i,t, where χi is the elasticity 

of physical distancing to the within-sector density of people in sector 
i. This elasticity varies across sectors as a function of working con-
ditions (proximity between workers or with customers, share of 
outdoor activities, etc.). The other variable ρi,t captures the effect of 
sanitary measures.  

• Similarly, in all regions of residence, the number of contacts per unit 
of time spent outside the sector can be expressed as the product of βa 

by ρa
t . Hence, two regions or countries sharing different economic 

and socio-demographic characteristics exhibit different levels of βa, 
while ρa

t is governed by nation-wide or local social distancing and 
prevention measures (as in Brodeur et al., 2020; Qiu and Chen, 
2020). 

To close the epidemiological block, we consider that the trajectories 
of iat are exogenous outside Luxembourg (i.e., for o = (G,F,B)), whereas 

the trajectory of iLt is endogenous and given by the average of all groups 
of Luxembourgish population: 

iL
t =

∑
i
∑

a=(y,L,r)Ia
i,t

∑
i
∑

a=(y,L,r)Na
i
. (9)  

2.3. Epidemionomic interdependencies 

We now highlight interdependencies between the economic and 
epidemiological blocks. First, sanitary policy measures and the evolu-
tion of the number of infected workers influence the number of workers 
available in industry i = 1,…, I in Luxembourg. Labor supply in COVID- 
19 times can be expressed as: 

Ls
i,t =

∑

a
ϕi,t(1 − λa

i,t)
(

Sa
i,t + Ra

i,t + μi,t(1 − θ)Ia
i,t + μi,tθIa

i,t

)
, (10)  

where ϕi,t is the lockdown constraint on employment (ϕi,t < 1 in lock-
down industries and ϕi,t = 1 in the others), λa

i,t is the share of workers on 
parental leave, equal to the share of parents with young children when 
schools are closed in sector a, and zero if schools fully re-open. A total 
lockdown would imply that ϕi,t = 0. In practice, a minimal level of post- 
lockdown activity is observed in all sectors, either because the lockdown 
applies to a sub-sector only, or because entrepreneurs find ways to 
maintain a certain level of output by re-orienting their activity (e.g., 
restaurants providing catering services with delivery at home). As 
μi,t ≤ 1, Eq. (10) clearly shows that a rise in the number of infected 
workers decreases the supply of labor and potentially influences the 
level of economic activity. In the same vein, PCR testing and quarantine 
measures allow identifying asymptomatic cases and reducing μi,t. 

Reciprocally, the evolution of employment in each industry governs 
the time allocation of each type of individual and influences trans-
mission rates through the extensive and intensive margins. Within each 
sector of the society, the rate of presence (at the workplace, at school or 
in the old-age sector) can be expressed as: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e0,t = ε1School
t ,

ei,t = ε
(

1 − τa
i,t

)min
(

Ld
i,t, Ls

i,t

)

∑

a
Na

i,t

foralli = 1,…, I,

eI+1,t =
ε
2

(11)  

where ε ≤ 1 is a constant capturing the fact that employed workers and 
students do not spend one hundred percent of their time at the work-
place or at school.11 For students, 1School

t is a dummy equal to one when 
schools are open, and zero otherwise. In the productive sectors (i = 1,…,

I), the second term, min
(

Ld
i,t , Ls

i,t

)/∑
aNa

i,t is the employment rate of 

group a in industry i. When the employment rate is smaller than unity, 
we assume that employees present at the workplace are randomly drawn 
from the industry-specific labor force, which means that employment 
rates are identical across countries of residence for active workers. In 
addition, τa

i,t denotes the share of employees in situation of teleworking 
in sector i, and do not contribute to virus transmission at the workplace 
(Papanikolaou and Schmidt, 2020a,b; Favero et al., 2020; Mongey et al., 
2020). These rates are highly heterogeneous across industries and skill 
groups, which can reinforce labor market inequalities in lockdown times 
(Bonacini et al., 2021a,b; Palomino et al., 2020). In Luxembourg, the 
high replacement rate (i.e., 80% of the pre-crisis income) offered to 
workers in partial unemployment, sick leave and parental leave has 
prevented inequality from increasing (O’Donoghue et al., 2021). In the 
old-age sector, we assume that retirees spend half of their time inter-
acting with retirees, and half of their time interacting with other groups. 

In our setting, lifting economic containment measures in industry i 
implies an increase in the rate of presence at the workplace (Δei,t) and a 
resulting rise in the weekly flow of infected workers that is governed by: 

dIa
i,t+1

dei,t
=

[

bi,t
Sa

i,t
∑

aIa
i,t

Na
i,t

− βa
t Sa

i,ti
a
t

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Extensive margin

+ χibi,t
Sa

i,t
∑

aIa
i,t

Na
i,t

⏟̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅ ⏟
Intensive margin

. (12) 

Eq. (12) shows that shocks in employment rates and teleworking 
practices influence the infection curve through two mechanisms. 
Changes in workers’ presence rate mechanically influence the flow of 
new infections through the extensive margin – changes in time spent on 
the job, where exposition to the disease differs from that prevailing in 
the place of residence – and through the intensive margin – changes in 
physical distancing and transmission rates on the job due to the higher 
density of employees. If χi = 0, changes in employment rates have no 
effect on transmission rates (at the intensive margin), although they 
affect the weight given to bi,t relatively to βa

t in Eq. (6); this is the first 
term of the derivative above. In such a setting, the lockdown-driven 
decrease in bi,t can be considered as permanent. In contrast, if χi > 0, 
part of that decrease in transmission rate is lost when workers get back 
to their workplace; this is the second term of the derivative. 

2.4. Parameterization 

Our epidemionomic model is an evolving tool that aims to promptly 
deliver initial results at first, and then increasingly more refined results 
and predictions as the set of available data on socioeconomic variables 
and leading indicators increases. Hence, our inputs and parameters have 
been frequently updated throughout the course of the crisis. Our 

11 When workers are fully employed, the daily amount of time spent inter-
acting with other workers is shared between a fraction ε on-the-job, and a 
fraction (1 − ε) in the place of residence. The choice of ε has little influence on 
the results as it mainly determines the scale of transmission rates. 
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quantitative analysis below focuses on two key moments in time, the end 
of the first lockdown (starting in April 2020), and the onset of the second 
wave (October 2020). We explain here how the model has been (re-) 
parameterized at these two key stages of the crisis. 

Parameterization of the economic block. Our economic block 
includes a set of parameters that have not been updated during the crisis. 
It is calibrated to match the I/O table of 2017, which includes the 19 
industries at the one-digit level, as reported in Table 1. The largest in-
dustries are ‘Financial and insurance services’ (28.4% of GDP in normal 
times), ‘Wholesale and retail trade’ (9.9%) and ‘Real estate services 
(8.7%); the smallest industries are ‘Mining and quarrying’ (less than 
0.1%) and ‘Agriculture, forestry and fishing’ (0.3%). The I/O table de-
fines the matrix of technical coefficients (aij) and provides initial values 
for the industry-specific levels of sales (Xi,0), value added (Yi,0), 
employment (Li,0), stock of physical capital (Ki,0), imports (Mi,0), exports 
(Ei,0) and domestic demand (Di,0). Social security (IGSS, Inspection 
générale de la sécurité sociale) and SILC (Statistics on Income and Living 

Conditions) data allow to identify workers originating from 
Luxembourg, Germany, France and Belgium. The production side of the 
model relies on the assumption that the production technology is Cobb- 
Douglas in each sector, the parameters of which are calibrated to match 
the capital income shares and the levels of value added. 

Placing ourselves back in April 2020, the problems were to nowcast 
the cost of the lockdown and forecast the consequences of a gradual 
deconfinement. We calibrated the economic block of the model to match 
the lockdown data available at the beginning of April. Our hypotheses 
are reported in Cols. 1–6 of Table 1 for all industries.12 They are based 
on the following sources (most of which are public or private institutions 
based in Luxembourg):  

• The share of workers in parental leave after school closing (λa
it) is 

taken from STATEC (Institut national de la statistique et des études 
économiques), and split across industries and origin countries using 
the proportion of workers with children aged 6–15 from SILC. The 
government exceptionally offered a replacement rate of 80% for 
workers who were forced to leave their job due to school closing.  

• The share of people in partial unemployment (“chômage partiel”) 
due to lockdown measures (ua

it) is obtained from ADEM (Agence pour 
le développement de l’emploi, the National Employment Agency), 
being aware that data on “chômage partiel” refer to applications and 
might overestimate the real extent of the employment effect. Un-
employment and parental leave data are combined to proxy the post- 
lockdown levels of employment by sector (Li,t ≡ Min(Ld

i,t ,Ls
i,t)). 

• For the lockdown industries (i.e., manufacturing products; con-
struction; wholesale and retail trade, repair services; transportation 
and storage services; accommodation and food services; real estate; 
arts, entertainment and recreation services; other services), we as-
sume that the observed levels of employment correspond to the 
maximal labor supply (Min(Ld

i,t , Ls
i,t) = Ls

i,t) and calibrate ϕi,t as a re-
sidual from Eq. (10).  

• In the other industries, we assume that Min(Ld
i,t ,Ls

i,t) = Ld
i,t. Observed 

employment levels are used to predict the value added and sales 
using Eq. (4). Assuming that non-lockdown industries are not supply- 
constrained, final demand (Di,t + Ei,t) is made compatible with these 
output levels. More precisely, we use export forecasts of the ifo 
institute and calibrate Di,t as a residual from Eq. (5). It will appear 
later that these forecasts were too pessimistic, at least in the financial 
sector which represents a share of Luxembourg GDP that is close to 
30%. 

• By contrast, lockdown industries are supply-constrained. Final de-
mand cannot be observed. We assume a 20% decrease compared to 
normal times in industries producing essential goods, and a 40% 
decrease in industries producing non-essential goods, in line with the 
forecasts of the ifo institute.  

• Finally, data on the share of workers in teleworking (τa
i,t) are taken 

from the survey of the Chamber of Commerce. 

To put things in the context of October 2020, we update the hy-
potheses above using observed macroeconomic data for the first three 
quarters of 2020 from STATEC. The quarterly growth rates for 2020Q1, 
Q2 and Q3 are equal to − 1.4%, − 7.2% and +4.8%, respectively. We 
recalibrated changes in final demand to match these numbers. In the 
absence of data by industry, we assumed proportional adjustments 
across sectors that are not subject to lockdown measures. We also 
updated data on teleworking and “chômage partiel” using data from 
STATEC and from ADEM. Parental leaves went back to their pre- 
lockdown levels after the reopening of schools. More details on the re- 
parameterization will be provided in Section 3.2. 

Parameterization of the epidemiological block. In our SIR 

Table 1 
Macroeconomic shocks by industry (as of April 1st, 2020).   

(1) (2) (3) (4) (5) (6)  
λa

i,t  ϕi,t  ua
i,t  τa

i,t  ΔEi,t

Ei,t  

ΔDi,t

Di,t  

Agric., forestry, 
fishing 

0.068 0.000 0.159 0.194 −

0.491  
−

0.400  
Mining, quarrying 0.068 1.000 0.089 0.372 −

0.200  
−

0.200  
Manufactured 

products 
0.068 1.000 0.367 0.313 −

0.200  
−

0.200  
Electricity, gas, steam 0.068 1.000 0.350 0.543 −

0.991  
−

0.400  
Water, sewerage, 

waste 
0.068 1.000 0.184 0.322 −

0.498  
−

0.400  
Construction 0.089 0.053 0.224 0.060 −

0.200  
−

0.200  
Wholesale, retail, 

repair 
0.066 0.535 0.388 0.060 −

0.200  
−

0.200  
Transport, storage 0.079 1.000 0.263 0.285 −

0.200  
−

0.200  
Accommodation, food 0.075 0.235 0.679 0.103 −

0.400  
−

0.400  
Information, comm. 0.093 1.000 0.105 0.856 −

0.482  
−

0.400  
Financial, insurance 0.082 1.000 0.000 0.700 −

0.167  
−

0.400  
Real estate 0.087 0.803 0.084 0.586 −

0.400  
−

0.400  
Prof, scient, techn 0.087 1.000 0.080 0.798 −

0.129  
−

0.400  
Adminis, support 0.087 1.000 0.214 0.363 −

0.200  
−

0.200  
Public administration 0.085 1.000 0.000 0.416 −

0.307  
−

0.200  
Education 0.100 1.000 0.018 0.900 −

0.400  
−

0.400  
Health, social work 0.084 1.000 0.019 0.134 −

0.200  
−

0.079  
Arts, entertainment 0.061 0.742 0.172 0.525 −

0.200  
−

0.400  
Other services 0.061 0.604 0.327 0.143 −

0.200  
−

0.200  

Notes: Col. (1): workers in parental leave from STATEC disaggregated by in-
dustry using IGSS data on workers aged 30 and less and workers with young 
children. Cols. (2): authors’ computations. Col. (3): data on “chômage partiel” 
from IGSS. Col. (4): data on teleworking from the survey conducted by Chamber 
of Commerce in April. Col. (5): authors’ computations based on the I/O matrix; 
Cols (6): authors’ hypotheses based on the survey conducted by Chamber of 
Commerce in April. 12 A more detailed description is provided in Burzynski et al. (2020). 
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compartmental model, transmission rates are calibrated to match data 
on the cumulative number of detected COVID-19 cases in the inactive 
population (students and retirees) and in the active population by sector. 
Daily data on COVID-19 cases by sector and by region of residence are 
available from the IGSS database from the beginning of March until 
October 19, 2021.13 We aggregate COVID-19 cases per week, creating a 
database of 34 weeks times 21 sectors of the society (714 observations) 
corresponding to Ia

i,t in Eq. (6). 
Over the same period, we also use national data on the shares of 

infected cases (iai,t for a = (G,F,B)) in the neighboring countries (used as 
proxies for Rhineland-Palatinate and Saarland for Germany, Grand Est 
for France, and Wallonia for Belgium). We calibrate time-varying 
transmission rates (βa

i,t for a = (G, F, B)) in each of the three contig-
uous regions to match the evolution of the share of infected people, 
using a simplified and independent SIR model by region. We consider 
the trajectory of transmission rates in these regions as independent of 
the sanitary conditions in Luxembourg. 

Transmission rates in Luxembourg are sector-specific. The philoso-
phy of our parameterization is to rely on a limited number of parameters 
and fitting assumptions. Many epidemiological models rely on complex 
polynomial functions to fit many daily data points. Obviously, the higher 
the number of parameters, the better the fit. This does not mean that the 
predictive power of such complex models is satisfactory – at least over 
sufficiently long periods of time – and that these models can predict the 
effects of out-of-trend shocks such as a deconfinement or the imple-
mentation of a new public health policy measures. A more structural 
approach such as ours is worth investigating. Taking as given the pa-
rameters of the neighboring regions, we fit the 21 infection curves by 
estimating 3 parameters per sector (i.e., 21 times 3 parameters) and 2 
parameters governing transmission rates outside the sector. 

In Eq. (8), we compute proxies for (μi,t , μi,t) as explained at the end of 
this section, and combine them with data on employment and school 
attendance to proxy ei,t. To compute ei,t, we need to specify the share of 
weekly social interactions that occur in each sector of the society, ε. 
Fully employed workers spend about 55 h/week at the workplace and in 
transportation, and of a weekly total of 75 h of interactions with family 
members, friends and other contacts. Assuming professional interactions 
involve three times more contacts than private contacts, we obtain a 
fraction ε = 0.7 on-the-job, and a fraction 1 − ε = 0.3 in the place of 
residence. These fractions have little influence on the results as they 
determine the scale of the transmission parameters. 

Within-sector transmission rates are thus influenced by three sector- 
specific parameters, (bi, ρi, χi). First, the scale parameter bi determines 
the pre-lockdown transmission rates (before March 17th, 2020). Second, 
we allow ρi to be smaller than one in the weeks during which the sector 
is constrained by sanitary measures, and set it equal to unity otherwise. 
Third, we estimate χi using variations in transmission rates and presence 
rates in the sector. Similarly, transmission rates outside their main sector 
of activity (i.e., industry, school, retirees’ sector) are influenced by two 
parameters, (βL

, ρL). The scale parameter βL determines the pre- 
lockdown transmission rates outside the sector. We allow ρL to be 
smaller than one in the weeks during which social and family activities 
are constrained, and set it equal to unity otherwise. 

The calibration of the parameter set Γ =
(

bi, ρi, χi, βL
, ρL

)
relies on 

the Simulated Method of Moments, which identifies the vector of trans-
mission rates to make simulated model moments ( Î

a
i,t(Γ)) match data 

moments (Ia
i,t): 

Min
Γ

Λ =
∑

t

∑

i

∑

a

(
Î

a
i,t(Γ) − Ia

i,t

)2
. (13) 

Fig. 1 compares our estimated infection curves (dashed black curves) 
with data on COVID-19 cases by sector (gray curves). Our fit is very good 
in most sectors of the society and excellent when focusing on the 
aggregate number of cases. As illustrated on the bottom-right graph, our 
model almost perfectly matches the evolution of the aggregate number 
of detected COVID-19 cases in the Luxembourgish workforce. In the pre- 
lockdown period, the correlation between bi and indices of exposure to 
risk by industry – reflecting heterogeneity in workers’ exposure to dis-
ease and physical distance at work – is around 0.6, suggesting that our 
method is meaningful. In the post-lockdown period, the correlation is 
small (around 0.1), suggesting that lockdown measures were effective in 
reducing physical distance and exposure to disease.14 

Once transmission rates are known, we identify its components in 
line with Eq. (8). The third component, 

[(
1 − θ)μi,t + θμi,t

]
, depends on 

the share of asymptomatic subjects among contagious individuals and 
on the fractions of infected workers who are still active on the labor 
market. Regarding the share of asymptomatic (θ), the recent CON-VINCE 
Study (Snoeck et al., 2020) conducted on 1862 Luxembourgish in-
dividuals identifies 35 cases with antibodies. These include 11 in-
dividuals who self-report to have been tested positive in the past months. 
This means that 1.3% of individuals (24 out of 1862) were undetected. 
Applying this percentage to the whole population gives a stock of 
asymptomatic of around 8000, which is twice as large as the total stock 
of detected cases. Given the small number of people in the sample, the 
accuracy of these numbers is low. Our calibration assumes that θ =

0.5.15 

The fractions of infected people who are still active within each 
sector of the society (μi,t ,μi,t) depend on the efficiency and frequency of 
PCR testing. In the absence of testing, we assume that infected workers 
self-isolate when they show some symptoms. Asymptomatic people 
never self-isolate. Calculations presented in the Appendix of Burzynski 
et al. (2020) allow approximating the fraction of working days supplied 
by symptomatic and asymptomatic infected workers under several 
testing scenarios:  

• In the absence of testing, we obtain μi,t = 0.20 and μi,t = 1.0 for all t.  
• If a weekly test is performed, we have μi,t = 0.15 and μi,t = 0.25 for all 

t.  
• If a daily test is performed, we have μv

i,t = μi,t = 0 for all t.  
• If a one-shot test is performed at time T, we have μi,T = μi,t = 0, and 

we get back to μi,t = 0.20 and μi,t = 1.0 thereafter (i.e., for all t > T). 

As massive testing was not implemented at the beginning of the lock-
down, we can hypothesize that 

[(
1 − θ)μi,0 + θμi,1

]
= 0.6 at the begin-

ning of the crisis. When simulating deconfinement plans, we consider 
several testing scenarios. 

3. Results 

The calibrated model is used to produce two sets of experiments. We 

13 As our model does not include working-age individuals who are not regis-
tered to IGSS (i.e., inactive and dependent individuals), we re-scale the number 
of infected individuals by sector so that the total number of infected people 
living in Luxembourg exactly matches the total number of COVID-19 cases in 
the Luxembourg population. We apply the same rescaling factors to cross- 
border workers. 

14 Results are presented in the Appendix of Burzynski et al. (2020).  
15 Heneghan et al. (2020) cover 21 studies based on various contexts. The 

range of estimates of this proportion varies from 5% to 80%. In the case of the 
Diamond Princess cruise in which all individuals were tested, about 18% were 
found to be asymptomatic. More recently, Fontanet et al. (2020) conduct a 
survey in a French high school involving pupils, teachers and non-teaching staff 
in the Oise region which was one of the first affected places of the epidemics in 
France. They find a rate of asymptomatic people of 17% only, but argue that 
this is likely to underestimate the rate in the general population. 
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Fig. 1. Calibration of the SIR model by sector. Note: Data on COVID-19 cases by sector (gray curve) are obtained from IGSS and aggregated by week. Estimation of 
SIR model are represented by the dashed black curve. 
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first use it to simulate the trajectory of public health and economic in-
dicators during the first deconfinement period, from April to June 2020. 
This first part summarizes the results presented in the initial version of 
this paper (Burzynski et al., 2020).16 Next, we use our model to quantify 
the epidemiological and economic effects of the second wave of 
COVID-19 and related containment policies, extending the time horizon 
to cover the year 2021. 

3.1. Back to May 2020: managing the first deconfinement 

Lockdown measures were implemented on 20 March 2020. Without 
taking stance on the potential trade-off concerning human lives vs. 
material goods and/or social losses, lockdown measures induce opposite 
economic and epidemiological consequences. On the one hand, they 
generate a decline in activity driven by a disciplined cut in lockdown 
industries, a decrease in final demand, and cascading effects in the other 
industries. Using industry-specific parameters from Table 1, our model 
predicts that each week of lockdown during the first wave translated 
into an output loss of about 28% compared to the pre-crisis level, as 
illustrated in Figure 2b. The most adversely affected industries were 
‘Construction’ ( − 66%), ‘Accommodation and Food’ ( − 62%), Mining 
and Quarrying ( − 43%), and ‘Wholesale/retail trade and repair ser-
vices’ ( − 42%). The least impacted industries are ‘Health and social 
work’ ( − 3%) and ‘Finance’ ( − 6%), ‘Education’ and ‘Public adminis-
tration’ showed limited responses of around 10%. On the other hand, the 
lockdown reversed the trend of rising infections. 

As shown in Fig. 2a, the peak of the infection curves was observed 
during the first week of April with around 1850 detected COVID-19 
cases (we exclude asymptomatic people who were not detected as pos-
itive). The number of infected people gets smaller than 50 by mid-June, 
implying a number of recovered people converging towards 4400 in-
dividuals (i.e., 0.7% of Luxembourg’s population). The lockdown has 
drastically limited the propagation of the virus, which implies that there 
was still a majority of susceptible workers in the Luxembourg labor force 
after the first wave. Any economically meaningful strategy of decon-
finement required that non-infected and non-immune workers were 
gradually brought back to work, which induced a risk of a relapse. 

Deconfinement scenario. In Fig. 2, we simulate the economic and 
health implications of the deconfinement measures implemented be-
tween April and June 2020 in Luxembourg. The deconfinement policy 
was gradual:  

• The first restarting stage started on April 20 and mainly involved the 
reopening of construction sites.  

• Secondly, schools gradually reopened after May 4. Reopening started 
with graduating classes in the secondary education, practical exer-
cise classes and internships at University and for the Advanced 
Technician Certificates. Secondary schools reopened on May 11. 
Primary schools and public childcare services reopened on May 25. 
This reduced the number of workers in parental leave.  

• Other measures were implemented on May 11. These consisted of 
removing constraints in all other sectors of the economy, with the 
exceptions of HORESCA as well as Arts, Entertainment and Recrea-
tive Services.  

• We also consider a resumption of social activities from the beginning 
of June. We allow transmission rates at the place of residence to 
partly return to their initial level once social life restarts. This might 
be due to restarting meals and parties with a limited number of 
friends and/or with family members, sport in small groups, more 
intensive use of public transportation, more contacts in shopping 
areas, mass departures during the holiday season or at weekends, etc.  

• To be consistent, we combine the deconfinement with the optimistic 
trade scenario involving a gradual recovery of exports from the 
beginning of June. We consider for the time being that teleworkers 
continue to work from home in the non-lockdown industries. 

Epidemiomonic results. The public health effects of these measures 
are presented in Fig. 2a and b, in which we consider that testing policies 
are not implemented. As a benchmark, we consider a best-case scenario 
in which transmission rates within sectors and in the total population are 
kept at their post-lockdown levels. In the other scenarios, we assume 
that employment constraints are relaxed in all sectors (i.e., ϕi,t = 1), 
except HORESCA and Arts, Entertainment and Recreative Services. This 
increases the level of employment in all sectors, due to cascading eco-
nomic effects. We analyze the effects of this deconfinement policy 
considering a set of sanitary scenarios. As a result from physical 
distancing, hygiene and prevention measures, transmission rates 
decreased drastically in Luxembourg and in the Greater Region after the 
lockdown. Part of the changes in transmission rates can be considered as 
permanent. In an optimistic scenario, depicted by the dashed black 
curve, we assume that (i) masks, distancing and hygiene measures are 
maintained and allow to keep transmission rates (ρi) at 50% of their pre- 
lockdown levels in all industries, (ii) post-lockdown teleworking prac-
tices remain in force in all sectors, and (iii) the resumption of social life 
has no effect on transmission rates outside the labor market and schools 
(ρL is kept at the post-lockdown level). Due to intensive margin effects, 
this optimistic deconfinement scenario translates into a second (flatter) 
wave that reaches its peak in the course of 2021. 

To illustrate the fragility of the health situation, we then consider 
that the resumption of social life influences transmission rates outside 
individuals’ sector of activity, with ρL becoming equal to 50% of the pre- 
lockdown levels. We allow changes in ρL to materialize in Luxembourg 
only (dashed red curve) or in the regions of origin of cross-border 
workers only, i.e., in Wallonia in Belgium, Grand-Est in France, Saar-
land and Rhineland-Palatinate in Germany (dashed green curve). In 
both cases, the infection curves shifts upwards and the second wave is 
more severe. Finally, the blue curves show that bringing teleworkers 
back to their workplace (all workers in blue, or cross-border workers 
only in dashed blue) reinforces the intensive-margin effects and gener-
ates a rapid and drastic increase in the infection curve. 

The economic effects are depicted in Fig. 2b. In the best-case sce-
nario, weekly GDP slowly goes back to its pre-crisis level before the end 
of the year. Remember that this scenario assumes a gradual recovery of 
final demand after June 2020. Considering the worst-case epidemio-
logical scenario (with changes in ρi and ρL) has limited economic effects 
as the number of infected peaks at around 15,000 persons, including 
10,000 workers (2% of the workforce) who can be partially replaced by 
those in partial unemployment. Hence, the effect of changes in the flow 
of new infections on the economy are rather small, contrary to the huge 
effects induced by generalized or partial lockdown measures. Overall, 
the annual GDP decreases by 8% compared to a no-crisis scenario. By 
contrast, assuming that changes in exports are permanent would lead to 
a long-lasting drop in GDP and an annual input loss of 15%. Hence, in an 
open-economy context such as in Luxembourg, economic prospects for 
2020 were highly sensitive to international economic conditions. For 
illustrative purpose, we also simulated a scenario in which all cross- 
border workers and teleworkers are unemployed, the loss of GDP 
would have exceeded 30%. The role of teleworking has been instru-
mental to limiting the economic output loss and the propagation of the 
virus. 

Testing policies. The results above indicate that the deconfinement 
policy implemented between April and June 2020 was likely to generate 
a second wave if it was not accompanied by appropriate testing and 
tracing measures. In Fig. 2c, we start from a scenario combining inten-
sive margin effects with changes in ρi and ρL (a mix of dashed black and 
dashed red curves in Fig. 2a). The continuous black curve clearly 

16 The analysis of the first deconfinement period relies on a simplified model, 
which abstracts from the two inactive groups, namely students and retirees. 
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indicates that a second wave occurs in the absence of testing. Starting 
from the same transmission rates, we simulate the effect of bi-monthly 
and monthly tests, as well as monthly tests for domestic workers only 
(i.e., excluding cross-border workers). 

We find that testing all workers and residents once per month 
(dashed black) is sufficient to avoid the second wave. By contrast, testing 
domestic workers only (blue dashed curve) generates a slow and gradual 
relapse of the pandemic, and testing all workers every two months 
generates a quick and drastic rebound. Obviously, stricter testing pol-
icies are needed if one considers a more pessimistic scenario where 
teleworkers are brought back to work or if transmission rates cannot be 
kept below 50% of their pre-lockdown levels. Although April–May–June 
2020 was a good time for lifting containment measures, our model was 
helpful to highlight the fragility of the sanitary situation. In particular, 
epidemiological predictions were highly sensitive to the evolution of 

teleworking practices, transmission rates outside the labor market, and 
testing policies. Three precautionary measures were drawn from our 
initial analysis (Burzynski et al., 2020):  

17 Maintaining teleworking practices is vital, at least in industries 
where working-from-home practices are feasible.17 All of our 
simulation results indicated that a cessation of teleworking 
practices would induce large epidemiological damages, even if 
drastic mitigation policies were implemented.  

18 Maintaining hygiene measures and high levels of physical 
distancing in social life has an important impact on the number of 
COVID-19 cases. Our results also indicated that the evolution of 
the number of COVID-19 cases is highly sensitive to transmission 
rates outside the labor market. 

Fig. 2. Epidemionomic analysis of the first deconfinement. Note: In panel 2 a, ‘IntMar’ means intensive margin only; ‘Dist.Lux’ and ‘Dist.GR’ mean social distancing 
outside the labor market in Luxembourg and in the Greater Region, respectively; ‘No WfH’ and ‘No WfH for CB’ mean no teleworking for all workers or for cross- 
border workers, respectively; ‘Best-case’ is the optimistic scenario with lockdown transmission rates. In panel 2 b, ‘Epid. Worst’ assumes a resumption of social life in 
all regions; ‘Export stagnation’ assumes exports remains at their lockdown level; ‘CB-TW=unempl’ assumes that cross-border workers and teleworkers are unem-
ployed; ‘Best-case’ is the optimistic scenario with lockdown transmission rates. In panel 2 c, we compare testing scenario in terms of frequency (monthly, bi-monthly, 
no testing) and target population (monthly testing of residents only. (For interpretation of the references to color in this figure citation, the reader is referred to the 
web version of this article.) 

17 Dingel and Neiman (2020) show that only 37% of jobs in the U.S. can be 
performed entirely remotely. There is a risk that teleworking practices exac-
erbate pre-existing inequalities in the labour market, especially if they are not 
adequately regulated (Bonacini et al., 2021a,b). 
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19 Monthly PCR testing of domestic and cross-border workers were 
necessary (but perhaps not sufficient) to prevent a rebound in the 
infection curve. 

20 Combining testing with contact tracing would reduce trans-
mission rates further. Ferretti et al. (2020) show that tracing 
pre/a-symptomatic people with a phone app and quarantining 
contacts of new detected cases would reduce the transmission 
rate by up to 50%. 

21 Preventing HORESCA activities to exceed half of their full ca-
pacity was also recommended. 

Ex-post evaluation. Four months after our studies, available sta-
tistics allowed to assess the relevance of our nowcasts, forecasts and 
recommendations. A rebound in the infection curve appeared in late 
July, followed by a drastic second wave which started to materialize in 
September. In line with our model predictions, this second wave can be 
essentially explained by a decrease in the share of teleworkers and, more 
importantly, by the changes in transmission rates outside the labor 
market (in schools and in social life) and by the coverage of the testing 
policy. Although the government invited its residents and cross-border 
workers to be tested on a monthly basis, between 25th May and 15th 
September the participation rate has been around 49% among the 
population resident in Luxembourg and 22.5% among the cross-border 
workers (Wilmes et al., 2021), which is almost equivalent to testing 
everyone every three months only. Hence, the Luxembourg testing 
agency operated way under its capacity levels, and was able to deliver 
testing results within less than a day only. The model predicted that the 
second wave was inevitable under these circumstances. 

Economically speaking, the model correctly predicted that the direct 
impact of changes in the infection curve on the economy proved to be 
relatively small. This is because the stock of infected people never 
exceeded 2% of the population, and workers in sick leave could easily be 
replaced by workers in partial unemployment. By contrast, containment 
measures induced large economic costs. Data reveals that GDP 
decreased drastically during the lockdown months, although our eco-
nomic forecasts proved to be too pessimistic. The economy has been 
more resilient than expected, which is mostly due to the fact that the 
domestic and international demand for financial services did not 
decrease as strongly as assumed in Table 1. Overall, the economic loss 
amounted to 1.4% and 7.2% in the first and second quarters of 2020, 
while our model predicted twice these amounts. The model assumptions 
were thus revised in October 2020 to predict the epidemiological and 
economic consequences of the second wave, as explained in the next 
section. 

3.2. Back to October 2020: managing the second wave 

The outlook for the global economy was highly uncertain after the 
summer 2020. In October 2020, we relied on scenarios developed by 
Oxford-Economics (2020) to delineate best-case and worst-case macro-
economic scenarios for Luxembourg’s GDP over the quarters of 2020 
and 2021.18 We adjusted our sanitary and final demand hypotheses to be 
compatible with these extreme scenarios, defined an intermediate and 
more relevant scenario relying on the moderately coercive measures 
implemented in the country, and predicted its epidemiological and 
economic effects for 2020 and 2021. 

Second-wave scenarios. The best-case scenario (labeled as NoSW) 
assumes the absence of a second wave and a quick recovery of the in-
ternational environment. It predicts that scientific advances will be such 
that restrictions can be completely lifted from 2020Q4. The effects of 
fear and uncertainty on final demand gradually disappear during 
2020Q4 and 2021Q1. Using observed macroeconomic data for the first 

three quarters of 2020, STATEC estimates that this NoSW scenario 
translates into annual GDP growth rates of − 3.5% in 2020 and +4.0% 
in 2021, which basically means a fast recovery towards the no-COVID 
trend. The underlying epidemiological trajectory assumes that virus 
transmission rates decrease monotonically towards zero between 
September 2020 and May 2021, and that medical advances (including a 
large-scale vaccination campaign) make it possible for social distancing 
to fully relax without implying a rebound in the infection curve. 

By contrast, the worst-case scenario (labeled as SWLO) predicts a 
second wave requiring generalized lockdowns throughout Europe. In 
the case of Luxembourg, STATEC assumes a new confinement of longer 
duration (covering 6 months during 2020Q4 to 2021Q1) in the same 
industries as in March–April (i.e., construction, sales in non-essential 
businesses, services to households, food and accommodation) as well 
as in leisure, family and social life. This will be accompanied by a long- 
lasting decrease in final demand due to lockdowns abroad and to a 
degradation of the confidence of local and foreign actors. STATEC es-
timates that this ‘SWLO’ translates into annual GDP growth rates of −
4.5% in 2020 and − 0.5% in 2021, implying two years of negative real 
growth. The underlying epidemionomic trajectory suggests that GDP 
will be 15–17% below the ‘No-COVID’ hypothetical trend during the 
lockdown weeks and will slowly recover afterwards. 

The reality is somewhere in the middle. After a dip in new cases in 
July and August, Luxembourg reported a higher number of cases than 
during the first peak. Hence, the second wave materialized and the 
question was: how bad will it be? Luxembourg avoided to strongly re- 
confine its economy in late October 2020. Besides testing, tracing and 
quarantining tools, the government decided to prohibit movements of 
people between 11PM and 6AM (i.e., a curfew), to reinforce social 
distancing measures in restaurants, bars and cafés, to limit private 
gatherings and presence in shops, to promote medical teleconsultation, 
to forbid sports activities involving more than four people, etc. The 
effectiveness of these sanitary measures and their economic implications 
are highly uncertain as they strongly depend on the degree of adhesion 
of the population as well as on external factors such as the evolution of 
preventive measures and epidemionomic conditions in the neighboring 
regions. In addition, after November 26, the government re- 
implemented a partial lockdown, which consisted of limiting family 
contacts and closing cafés and restaurants, cinemas, theaters, swimming 
pools and sport centers. 

We relied on an optimistic parametric interpretation of these sani-
tary measures, that we refer to as the SWNL scenario (for ‘second wave 
with no generalized lockdown’). More precisely, compared to early 
October and starting in November 2020, we assume a 50% decrease in 
contamination rates outside the labor market in the neighboring regions, 
and an increase in teleworking (up to 50% of the April level). We also 
assume a trajectory of final demand that is less optimistic than under 
NoSW ( − 20% in 2020Q4 and 2021Q1, followed by a gradual recovery) 
due to consumers’ fears and uncertainty. We also considered a new 
lockdown in HORESCA and in the “Arts, Entertainment and Recreative 
Services” from November 26 to the end of 2020.19 

A spectrum of epidemionomic prospects. Fig. 3 depicts the 
aggregate results of our model, and Table 2 summarizes estimates of 
quarterly growth rates for the years 2020 and 2021. Under the NoSW, 
the spread of the virus remains rampant until June 2021 with low in-
tensity from January. Under the SWLO scenario, a new generalized 
lockdown starting in September 2020 would have prevented the infec-
tion curve to skyrocket. 

The most likely scenario (SWNL) generates intermediate results. Our 
parametric interpretation of sanitary measures has been chosen to 
generate a decrease in the infection curve that is comparable to that of 

18 The latter were elaborated with the help of STATEC, building on their 
flagship macroeconomic model Modux. 

19 Note that the average occupancy rate in hotels was already low, in the range 
of 15 to 25% of their pre-lockdown levels, according to recent newspaper 
article. 
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the lockdown scenario, which has been confirmed by the observed tra-
jectory of the infection curve. The model predicts that the number of 
symptomatic active COVID cases peaks at 14,500 by mid-December 
2020 (one month later compared with SWLO) and then fall until May 
2021. By the end of 2021, the cumulative share of people who have ever 
been infected will be around 25% (i.e., 120,000 individuals). These re-
sults are moderately influenced by the sanitary conditions in the 
neighboring regions, except under extreme scenarios.20 The major dif-
ference with SWLO relates to the macroeconomic implications of the 

containment measures. We estimate that this SWNL scenario translates 
into annual growth rates of − 3.9% in 2020 and +3.7% in 2021, which 
is quite close to the NoSW scenario ( − 3.5% and +4.0%, respectively).21 

Hence, managing the second wave with moderately coercive measures 
has limited the cost of the second wave to 0.3 and 0.4 percentage point 
of GDP in 2020 and 2021, respectively. 

Sensitivity to hypotheses. There was considerable uncertainty on 
whether moderately coercive sanitary measures will prove strong 
enough to contain the second wave and on the concomitant evolution of 
the international environment. The predictions of the SWNL strongly 
depend on our parametric interpretation of existing measures. To 
quantify that uncertainty and to identify the key mechanisms at play, we 
started from the SWNL and considered 8 variants (one variant at a time) 
implying (i) more or less teleworking (100% vs. 0% of the sectoral share 
of March–April), (ii) higher or lower adhesion to distancing measures in 

Fig. 3. Weekly path of epidemionomic outcomes under three scenarios. Note: The left panel reports the percentage of deviation in weekly GDP from the hypothetical 
“No-COVID” situation. The right panel reports the number of detected COVID-19 active cases (left scale) and the total number of recovered (right scale). NoSW means 
no second wave; SWLO means no second wave due to a new generalized lockdown; SWNL means a second wave managed with moderately coercive measures. 

Table 2 
Trajectory of Luxembourg GDP under three scenarios, 2020–2021 by quarter.   

2020 2021  

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

No-COVID reference (Ref) 13,206 13,286 13,365 13,445 13,526 13,607 13,689 13,771  

NoSW 12,947 12,016 12,595 12,595 12,658 12,911 13,169 13,432 
Cumulated index (Ref = 100) 98.0 90.4 94.2 93.7 93.6 94.9 96.2 97.5 
Quarterly growth rate (%) − 1.4  − 7.2  +4.8 0.0 +0.5 +2.0 +2.0 +2.0 
Annual GDP growth rate − 3.5  +4.0  

SWLO 12,947 12,016 12,593 12,089 11,726 12,195 12,561 12,938 
Cumulated index (Ref = 100) 98.0 90.4 94.2 89.9 86.7 89.6 91.8 94.0 
Quarterly growth rate (%) − 1.4  − 7.2  +4.8 − 4.0  − 3.0  +4.0 +3.0 +3.0 
Annual GDP growth rate − 4.5  − 0.5   

SWNL 12,947 12,016 12,595 12,388 12,430 12,817 13,132 13,415 
Cumulated index (Ref = 100) 98.0 90.4 94.2 92.1 91.9 94.2 95.9 97.4 
Quarterly growth rate (%) − 1.4  − 7.2  +4.8 − 1.6  +0.3 +3.1 +2.5 +2.1 
Annual GDP growth rate − 3.9  +3.7 

Note: The No-COVID reference scenario assume a 1.5% growth rate per quarter. NoSW stands for absence of second wave. SWLO stands for second wave requiring a 
generalized lockdown. SWNL stands for second wave requiring moderately coercive measures only. Numbers for 2020Q1 and 2020Q2 are observations. Source: 
STATEC (2020). Note de Conjoncture of December 2020. 

20 In unreported results, we simulated the trajectory of the infection curve 
under two scenarios in all contiguous regions (transmission rates equal to zero, 
or five times larger than those resulting from the SIR models for Belgium, 
France and Germany). Similar findings are found in the pessimistic scenario, 
with a peak at 15,000 COVID cases by mid-December. By contrast, we obtain a 
peak of 7,500 COVID cases under the (over-)optimistic scenario with zero 
transmission rates. 

21 Simulations in line with the robustness checks below suggest that about 3/4 
of the growth differential with NoSW in 2020Q4 is due to epidemiological ef-
fects: the labor force decreases by about 30,000 persons in December (14,500 
infected and approximately the same number of quarantined people). By 
contrast, the stock of active cases will be much smaller in 2021 and 4/5 of the 
growth differential in 2021Q1 is due to the deterioration of final demand. 
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leisure, social and family life (contamination rates outside the labor 
market equal to 25% or 75% of those observed in early October), (iii) 
more or less testing/tracing (50% of participation in large-scale testing 
and 6 quarantined people per case vs. total absence of testing/tracing), 
(iv) more optimistic or pessimistic trajectory for exports (no shock vs. −
40% in 2020Q4 and 2021Q1). These variants are considered as inde-
pendent of each other, which means that we disregard the fact that 
variations in the infection curve can induce pressures on ICU admissions, 
panic or protest movements, which could translate into final demand 
responses. Fig. 4 illustrates the epidemionomic consequences of these 
alternative scenarios. 

We first focus on adhesion to public health measures. Changes in 
teleworking practices have small effects on the infection curve. Within 
the context of our model, this is explained by the fact that highest 
transmission rates during the second wave were observed outside the 
labor market. Changes in social distancing have bigger effects, 
increasing the number of cases by 4,500 at the peak (low distancing) or 
decreasing it by 1,000 (high distancing).22 Changes in testing/tracing 
practices induce moderate epidemiological effects, increasing the 
number of cases by 2,500 at the peak (absence of large-scale testing and 
tracing) or decreasing by 1,500 (higher adhesion). These sanitary vari-
ants induce negligible effects on the economy (contrary to the deep-set 
trend in COVID cases), while annual GDP growth rates are sensitive to 
the evolution of the international environment. Turning our attention to 
export shocks, we find opposing results. The epidemiological conse-
quences of output and employment shocks are negligible, which again 
results from the fact that transmission rates on the job were relatively 
well contained. By contrast, the economic trajectory for 2021 is sensitive 
to exports. For 2020, the effect is smaller as GDP levels for Q1 to Q3 are 

already given. In particular, the low-export variant translates into an 
annual growth rate of − 3.9% in 2020 and 2.9% in 2021 (against −
3.8% and +3.6% under SWNL). From an epidemiological point of view, 
a lockdown-type policy during the second wave would have generated 
much more foreseeable epidemiological effects, in particular a consid-
erably lower number of infections likely leading to fewer deaths, at the 
cost of a much bigger recession. It is thus crucial to underline once more 
that some measures aimed at containing the spread of the infection come 
with a combination of economic and epidemiological consequences, 
thus carefully considering the trade-off between these aspects is crucial 
in deciding about intervention strategies. It remains an open, somewhat 
subjective question how to weight these different aspects in an optimal 
way. 

4. Conclusion 

Our model jointly endogenizes the health and economic responses to 
the COVID-19 crisis and the related containment and public health 
policy measures implemented in Luxembourg and in its neighboring 
regions. It allows us to quantify the economic and public health effects of 
the first and second waves of COVID-19 under various economic, 
epidemiological and public health scenarios. We focus here on two key 
moments in time. The first one is the deconfinement period following 
the first lockdown (May-June 2020). Our set of nowcasts and policy 
experiments conducted in May 2000 predicted that the restarting of 
lockdown industries per se was unlikely to induce a relapse of the 
pandemic if teleworking practices could be maintained. Nevertheless, 
we predicted that the resumption of social life and, to a lesser extent, the 
cessation of teleworking practices were likely to generate a rebound in 
the infection curve. We thus recommended to maintain teleworking 
practices and high levels of physical distancing in social life, as well as 
promoting monthly testing and quarantining measures. Available sta-
tistics revealed that we overestimated the economic costs of the first 
wave; this is because the financial sector has been much more resilient 

Fig. 4. Sensitivity of the SWNL scenario to epidemionomic variants. Note. The left panel reports the percentage of deviation in weekly GDP from the hypothetical 
“No-COVID” situation. The right panel reports the number of detected COVID-19 active cases. 

22 The low-distancing variant roughly translates into 140 admissions in 
intensive care units by the very end of the year, leading to a quasi-saturation of 
the ICU system. 
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than initially assumed. However, the second wave materialized after the 
Summer 2020. In line with our predictions, this is explained by higher 
transmission rates outside the labor market, low participation in testing 
and a decrease in teleworking. 

Five months later, history was repeating itself. As the COVID-19 
second wave was hitting much of Europe, some countries entered a 
new (total or partial) lockdown allowing people to leave their home only 
to go to work (when teleworking was not feasible) or to buy essential 
goods and seek medical help, banning or limiting social gatherings, 
prescribing curfews, shutting non-essential activities, etc. Luxembourg 
followed suit by taking new measures but avoided to re-confine part of 
its economy. Besides testing, tracing and quarantining tools, the gov-
ernment decided to prohibit movements of people between 11PM and 
6AM, to reinforce social distancing measures in public transport, to limit 
private gatherings and presence in shops, to promote medical tele-
consultations, to forbid sport activities involving more than four people, 
and to close restaurants, bars and cafés. We re-parameterized our model 
to assess the effectiveness of these sanitary measures and the macro-
economic cost of the second wave. We estimate that the management of 
the second wave translates into moderate GDP losses in the years 2020 
and 2021. If Luxembourg can escape a massive third and/or fourth 
wave, real GDP growth should almost get back to its long-term level in 
2021. 
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